Abstract

Ecological communities are structured in response to spatial and temporal variation of numerous factors, including edaphic conditions, biotic interactions, climatic patterns and disturbance regimes. Widespread anthropogenic factors such as timber harvesting can create long-lasting impacts, obscuring the relationship between community structure and environmental conditions. Minimally impacted systems such as old-growth forests can serve as a useful ecological baseline for predicting long-term compositional shifts. We utilized decadal tree species sampling data (1979–2010) divided into three strata (understory, midstory, overstory) to examine temporal changes in relative abundances and spatial distributions of dominant taxa, as well as overall shifts in community composition, in a relatively pristine Appalachian old-growth forest in eastern Kentucky, USA. Quercus and Carya species persisted mainly as mature canopy trees with decreasing juvenile recruitment, especially in mesic areas. In contrast, Acer, Fagus, and other mesophytic species were abundant and spatially widespread in subcanopy layers suggesting these species are more likely to recruit in gap-scale canopy openings. In the overstory, mesophytic species were spatially restricted to lower and mid-slope mesic habitats. Temporal changes in community composition were most evident in the understory and tended to be greater in mesic areas, a trend seemingly driven by recruitment failure among xerophytic species. In subcanopy vegetation we discovered a loss of distinction through time among the ecological community designations established following the 1979 survey (Chestnut oak, Mixed mesophytic, and Beech). The overstory was more stable through time, suggesting a storage effect where long-lived trees have maintained a particular community composition through time in areas where regeneration opportunities are minimal under current environmental conditions. Overall, sitewide canopy succession is occurring slowly in the absence of major disturbance, and topography-driven environmental variation appears to have an important local-scale filtering effect on communities.

Highlights

  • In the face of widespread and increasing anthropogenic activity, the ability to understand and predict ecosystem changes has become a central goal in ecology

  • This slow rate of canopy replacement coupled with the long lifespans of tree species in this region results in a ‘storage effect’ [9] where a particular overstory composition can be maintained for several hundred years even through changes in environmental conditions or disturbance regimes

  • Forest dynamics are known to be influenced by disturbance processes and shifting environmental conditions, and datasets that (a) provide long-term perspective and (b) allow for

Read more

Summary

Introduction

In the face of widespread and increasing anthropogenic activity, the ability to understand and predict ecosystem changes has become a central goal in ecology. The outcomes of such recruitment events are dependent upon the composition and demography of juvenile populations, which can be highly variable through space and time [13,14,15,16,17] due to factors such as habitat heterogeneity, dispersal limitation, environmental fluctuations, growth response characteristics, and density-dependent interactions such as competition [18,19,20,21] This variability combined with the stochastic nature of canopy gap formation is thought to allow sufficient recruitment opportunities for a wide range of species [16]; species with consistently poor juvenile establishment and survival (recruitment-limited) can be at a disadvantage [19,22]. The relative abundances of species can affect “lottery” outcomes as more abundant species are more likely to capture available resources [23], and over the long term, this could result in broad-scale compositional shifts

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call