Abstract

In this contribution, we measured the third-order nonlinear optical response of bismuth oxychloride (BiOCl) nanosheets with the open-aperture (OA) and the closed-aperture (CA) Z-scan techniques with a variable excitation intensity at 1.34 µm. The effective nonlinear absorption coefficient βeff and the nonlinear refractive index n2 of the prepared BiOCl nanosheets with abundant oxygen vacancies were obtained under the excitation intensity. The third-order nonlinear optical susceptibility |χ(3)| was 1.64 × 10-9 esu. The nonlinear optical features of BiOCl enabled it as a superb saturable absorber for pulse laser generation. As a consequence, we demonstrated the first passively Q-switched Nd:GdVO4 laser with the BiOCl saturable absorber, producing a shortest pulse duration of 543 ns and a highest repetition rate of 227 kHz, leading to a maximum pulse energy of 74 nJ. Our findings show that BiOCl nanosheets with oxygen vacancies have large nonlinear optical sensitivities and can be exploited to generate optical pulses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call