Abstract

Au-core CdS-shell composite nanoparticles were synthesized by a direct self-assembly process and integrated into BaTiO3 thin films. Characterization by transmission electron microscopy showed that the average diameter of these composite nanoparticles was about 8 nm. Using the femtosecond time-resolved optical Kerr effect method, we investigated the third-order nonlinear optical response of the Au@CdS nanoparticles embedded in the BaTiO3 thin films at a wavelength of 800 nm. An ultrafast nonlinear response and a large effective third-order nonlinear susceptibility of χ(3)=7.7×10-11 esu were observed. We attributed the enhancement of the third-order optical nonlinearity to a localized electric field effect originating from the core-shell structure under off-surface-plasmon resonance conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.