Abstract

The third-order nonlinear optical (NLO) properties of aromatic diimide molecules have been studied for the first time using density functional theory (DFT) with a finite field (FF). This study shows that the size of the aromatic core can affect the static second hyperpolarizability (γ). Increasing the number of benzenes along the longitudinal axis can effectively improve the γ values because the degree of charge transfer along the longitudinal direction increases, whereas an increase in the number of benzenes along the perpendicular axis does not enhance the γ values. Furthermore, the NLO responses of the reduced form radical anions 1−, 5− and 6−, which were obtained by a reversible redox process, are discussed. The results show that the γ values of the radical anions are changed by the redox process. For the reduced form radical anion 6−, the γ value is −1906.71×10−36esu, and its absolute value is ∼7.3 times larger than that of its neutral parent. An analysis of the BLA values demonstrates that the γ value is closely related to the conjugation of the aromatic core used in the redox process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.