Abstract

A significant level of correction of the mutation responsible for sickle cell anemia has been achieved in monkey COS-7 cells on a plasmid containing a beta-globin gene fragment. The plasmid was treated in vitro with a nucleic acid 'third strand' bearing a terminal photoreactive psoralen moiety that binds immediately adjacent to the mutant base pair. Following covalent attachment of the psoralen by monoadduct or diadduct formation to the mutant T-residue on the coding strand, the treated plasmid was transfected into the cells, which were then incubated for 48 h to allow the cellular DNA repair mechanisms to remove the photoadducts. Upon re-isolation and amplification of the transfected plasmid, sickle cell mutation correction, as determined by sequence analysis of both complementary strands, was established in a full 1%. This result encourages extension of the approach to correct the mutation directly on the chromosome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.