Abstract

An accelerated observer moving through empty space sees particles appearing and disappearing, while an observer with a constant velocity does not register any particles. This phenomenon, generally known as the Unruh effect, relies on an initial vacuum state, thereby unifying the experience of all inertial observers. We propose an experiment to probe this observer-dependent detector response, using a laser beam in circular motion as a local detector of superfluid helium-4 surface modes or third sound waves. To assess experimental feasibility, we develop a theoretical framework to include a non-zero temperature initial state. We find that an acceleration-dependent signal persists, independent of the initial temperature. By introducing a signal-to-noise measure we show that observing this signal is within experimental reach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.