Abstract
Copper(II), Cobalt (II) and Iron (II) complexes as photosensitizer on Dye Sensitized Solar Cell (DSSC) had been investigated. The aim of this research is to find out the respond addition of those dyes on FTO/TiO2 (FTO = fluorine Tin Oxide) thin film to visible light and the effect of various third row complexes to DSSC performance. Slip casting method was used to fabricate FTO/TiO2 and FTO/carbon thin film. The result from FTO/TiO2 UV-Vis spectra show no absorption on visible light. Dye solution was synthesized from free metal ions of Cu(II), Co(II), and Fe(II) in methanol with diphenylamine (dpa), 2,2,bypiridine (bpy), 1,10, phenathroline (phen), 4,4’-dicarboxylic acid-2,2’-bipyridine (dcbq), and anthocyanin (ant) ligands, respectively. UV-Vis spectrophotometry was used to identify FTO/TiO2/dye with various sensitizer dyes. The performance of DSSC was determined by I (current) - V (voltage) curve using Keithley 2602 A System Source. In this research, DSSCs are able to convert photon energy become electrical energy. Dye used in DSSC is greatly effect in photon to current efficiency (IPCE). The greater absorption in visible region of alternative dye used gains higher IPCE spectra. TiO2 character can help spread the absorption in whole visible region. The nanosize mesoporous TiO2 of TiO2/SiPA/CoII-PAR (SiPA = silylpropilamine) have greater value than P25 TiO2/SiPA-Co<sup>II</sup>-PAR. The SiPA/Fe<sup>II</sup>-PAR and SiPA/Co<sup>II</sup>-PAR dyes are better dye than tpa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.