Abstract

Third rank Killing tensors in (1+1)-dimensional geometries are investigated and classified. It is found that a necessary and sufficient condition for such a geometry to admit a third rank Killing tensor can always be formulated as a quadratic PDE, of order three or lower, in a Kahler type potential for the metric. This is in contrast to the case of first and second rank Killing tensors for which the integrability condition is a linear PDE. The motivation for studying higher rank Killing tensors in (1+1)-geometries, is the fact that exact solutions of the Einstein equations are often associated with a first or second rank Killing tensor symmetry in the geodesic flow formulation of the dynamics. This is in particular true for the many models of interest for which this formulation is (1+1)-dimensional, where just one additional constant of motion suffices for complete integrability. We show that new exact solutions can be found by classifying geometries admitting higher rank Killing tensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.