Abstract

Studies of the third-order nonlinear optical properties in TeO2-MO-R2O glasses with three different alkali metal oxides R2O (R = Li, Na, K) as network modifiers and two network intermediates MO (M = Zn, Mg) are reported. The influence of such modifiers and intermediates on the nonlinear optical properties of these glasses was investigated using the standard Z-scan and the thermally managed Z-scan techniques under femtosecond pulse excitation at 800 nm. For different modifiers and intermediates, the nonlinear refraction indices n2 of these glasses varied in the range 1.31–2.81 (×10–15 cm2/W). It was found that n2 increases as the ionic radius of both network modifiers and intermediates decreases. Furthermore, the measurements show that the contribution from thermo-optical effects to the nonlinear refraction index is negligible for all of the studied glass compositions. In addition, the effect of modifiers and intermediates in the formation of localized states in the vicinity of the optical bandgap was also studied through photoluminescence experiments. These experiments revealed the presence of two emission bands (red and blue) originating from these localized states that can be populated after optical excitation and subsequent relaxation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.