Abstract

PVDF based nanocomposite thin films have received great interest in energy harvesting, ferroelectric, pyroelectric and dielectric applications. In this novel study, we have exploited the electroactive β-phase (polar) formation in polyvinylidine fluoride–halloysite nanotube (PVDF–HNT) nanocomposite thin films fabricated by the spin coating technique for nonlinear optical applications. It was demonstrated that HNTs of different volume percentage loadings in the PVDF matrix were able to effectively nucleate PVDF in β (TTTT-all trans) conformation using X-ray diffraction and Infrared spectroscopy techniques. Closed aperture Z-scan measurements were performed for all the thin film samples with a CW laser as an excitation source at a wavelength of 632.8 nm. We observed a sign change in the nonlinear refractive index for PVDF. Nonlinear refractive index has a negative sign for pristine PVDF and a positive sign for HNT incorporated PVDF thin films. This anomalous behavior of change in the nonlinear refraction of PVDF is explained in our present work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call