Abstract
Abstract In this paper, we study linear non-Gaussian graphical models from the perspective of algebraic statistics. These are acyclic causal models in which each variable is a linear combination of its direct causes and independent noise. The underlying directed causal graph can be identified uniquely via the set of second and third-order moments of all random vectors that lie in the corresponding model. Our focus is on finding the algebraic relations among these moments for a given graph. We show that when the graph is a polytree, these relations form a toric ideal. We construct explicit trek-matrices associated to 2-treks and 3-treks in the graph. Their entries are covariances and third-order moments and their $2$-minors define our model set-theoretically. Furthermore, we prove that their 2-minors also generate the vanishing ideal of the model. Finally, we describe the polytopes of third-order moments and the ideals for models with hidden variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.