Abstract
The low-order harmonic generation induced by a strong laser field produces a bright, ultrashort, supercontinuum radiation ranging from the terahertz to ultraviolet band. By controlling the phase-delay and ellipticity of the bi-chromatic laser fields, the third harmonic generation is experimentally and theoretically investigated for elucidating the mechanism of the low-order harmonics. The third harmonic generation is found to be strongly suppressed in the counter-rotating bi-chromatic laser field due to the selection rule for harmonic emissions. The continuum-continuum transition in the strong field approximation is extended to explain the third harmonic generation as a function of the phase delay and ellipticity of the bi-chromatic laser fields. Compared with the semi-classical photocurrent model, the continuum-continuum transition on the basis of quantum-mechanical treatment achieves better agreement with the experimental observations. Our work indicates that the overlapping in continuum states via different quantum paths of a single electron plays a role in low-order harmonics generation under elliptical bi-chromatic laser fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.