Abstract
This study investigates the fundamental limits of variable-length compression in which prefix-free constraints are not imposed (i.e., one-to-one codes are studied) and non-vanishing error probabilities are permitted. Due in part to a crucial relation between the variable-length and fixed-length compression problems, our analysis requires a careful and refined analysis of the fundamental limits of fixed-length compression in the setting where the error probabilities are allowed to approach either zero or one polynomially in the blocklength. To obtain the refinements, we employ tools from moderate deviations and strong large deviations. Finally, we provide the third-order asymptotics for the problem of variable-length compression with non-vanishing error probabilities. We show that unlike several other information-theoretic problems in which the third-order asymptotics are known, for the problem of interest here, the third-order term depends on the permissible error probability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.