Abstract
The third-harmonic generation (THG) coefficient for a laser-driven quantum dot with an on-center Gaussian impurity under static magnetic field is theoretically investigated. Laser field effect is treated within the high-frequency Floquet approach and the analytical expression of the THG coefficient is deduced from the compact density-matrix approach. The numerical results demonstrate that the application of intense laser field causes substantial changes on the behavior of THG. In addition the position and magnitude of the resonant peak of THG coefficient is significantly affected by the magnetic field, quantum dot size and the characteristic parameters of the impurity potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.