Abstract

A well crystallized Benzophenone single crystal was successfully grown by vertical semi transparent Bridgman technique. The lattice parameters of the grown crystal were established by single crystal x-ray diffraction technique. Fourier transform infrared spectroscopy was performed to determine the functional groups. The UV-NIR analysis revealed that the Benzophenone crystal has high transmittance in the entire visible region and the lower cutoff wavelength has been found to be 381 nm. The optical band gap energy was calculated and it is found to be 3.08 eV. The various linear optical parameters such as, Extinction coefficient (k), Refractive index (n), Reflectance, Complex dielectric constant, Optical susceptibility, Electrical conductivity and Optical polarization of the grown crystal were estimated and its variation with respect to incident photon energy was examined. Furthermore, the third order nonlinear optical properties were investigated by the z-scan technique using continuous wave Nd-YAG laser. The obtained thermophysical properties making use of photoacoustic spectroscopy show the superiority of the crystal over few other standard NLO materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call