Abstract

In supersymmetric models with gluinos around 1000-2000 GeV, new physics searches based on cascade decay products of the gluino are viable at the next run of the LHC. We investigate a scenario where the light stop is lighter than the gluino and both are lighter than all other squarks, and show that its signal can be established using multi b-jet, multi W and/or multi lepton final state topologies. We then utilize both boosted and conventional jet topologies in the final state in conjunction with di-tau production as a probe of the stau-neutralino co-annihilation region responsible for the model's dark matter content. This study is performed in the specific context of one such phenomenologically viable model named No-Scale F-SU(5).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.