Abstract

BackgroundThe third generation Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitor (TKI) osimertinib has been initially approved for T790M positive Non-Small Cell Lung Cancer (NSCLC) and more recently for first-line treatment of EGFR-mutant T790M negative NSCLC patients. Similarly to previous generation TKIs, despite the high response rate, disease progression eventually occurs and current clinical research is focused on novel strategies to delay the emergence of osimertinib resistance. In this study we investigated the combination of osimertinib with pemetrexed or cisplatin in EGFR-mutated NSCLC cell lines and xenografts.MethodsTumor growth was evaluated in a PC9T790M xenograft model and tissue composition was morphometrically determined. PC9, PC9T790M and HCC827 cell lines were employed to test the efficacy of osimertinib and chemotherapy combination in vitro. Cell viability and cell death were evaluated by MTT assay and fluorescence microscopy. Protein expression and gene status were analysed by Western blotting, fluorescence in situ hybridization analysis, next-generation sequencing and digital droplet PCR.ResultsIn xenograft models, osimertinib significantly inhibited tumor growth, however, as expected, in 50% of mice drug-resistance developed. A combination of osimertinib with pemetrexed or cisplatin prevented or at least delayed the onset of resistance. Interestingly, such combinations increased the fraction of fibrotic tissue and exerted a long-lasting activity after stopping therapy. In vitro studies demonstrated the stronger efficacy of the combination over the single treatments in inhibiting cell proliferation and inducing cell death in PC9T790M cells as well as in T790M negative PC9 and HCC827 cell lines, suggesting the potential role of this strategy also as first-line treatment. Finally, we demonstrated that osimertinib resistant clones, either derived from resistant tumors or generated in vitro, were less sensitive to pemetrexed prompting to use a chemotherapy regimen non-containing pemetrexed in patients after progression to osimertinib treatment.ConclusionsOur results identify a combination between osimertinib and pemetrexed or cisplatin potentially useful in the treatment of EGFR-mutated NSCLC patients, which might delay the appearance of osimertinib resistance with long-lasting effects.

Highlights

  • The third generation Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitor (TKI) osimertinib has been initially approved for T790M positive Non-Small Cell Lung Cancer (NSCLC) and more recently for first-line treatment of EGFR-mutant T790M negative NSCLC patients

  • Our previous data indicated that in PC9 cell line and xenograft models the combination of gefitinib with pemetrexed or the intermittent combination of pemetrexed and gefitinib prevented the appearance of gefitinib resistance mediated by T790M mutation and epithelial-mesenchymal transition [10]; the combination was ineffective when gefitinib was administered before pemetrexed

  • Efficacy of osimertinib combined with pemetrexed or cisplatin on tumor growth in PC9T790M xenograft and cell line models Firstly, the effects of the combination of osimertinib with pemetrexed were investigated on PC9T790M (EGFR exon 19 E746-A750 deletion, T790M positive) xenograft models

Read more

Summary

Introduction

The third generation Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitor (TKI) osimertinib has been initially approved for T790M positive Non-Small Cell Lung Cancer (NSCLC) and more recently for first-line treatment of EGFR-mutant T790M negative NSCLC patients. EGFR G796/ C797, L792 and L718/G719 mutations, MET and HER2 amplification, BRAF, KRAS, and PIK3CA mutations, oncogenic fusion mutations in FGFR3, RET, and NTRK were recently identified in a large cohorts of osimertinib-resistant lung cancer patients either treated in second-line [7, 8] and in first-line [9]. Knowledge of these mechanisms is relevant in order to develop new therapeutic strategies to overcome TKI-resistance; how prevent or delay the acquisition of resistance remains an important issue. Chemotherapy, given its different and more generic mechanism of action, can postpone the resistance to EGFRTKIs by limiting the tumor heterogeneity, improving the efficacy of treatment either in first- and second-line

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call