Abstract

Status epilepticus in poststroke epilepsy is a challenging condition because of multiple vascular comorbidities and the advanced age of patients. Data on third-generation antiseizure medication (ASM) in this condition are limited. The aim of this study was to evaluate the efficacy of third-generation ASMs in the second- or third-line therapy of benzodiazepine-refractory status epilepticus in poststroke epilepsy following acute ischemic stroke. Data on the effectiveness of third-generation ASMs in patients with status epilepticus in poststroke epilepsy were gathered from two German Stroke Registries and the Mainz Epilepsy Registry. We included only cases with epilepsy remote to the ischemic event. No patients with acute symptomatic seizures were included. The following third-generation ASMs were included: brivaracetam, lacosamide, eslicarbazepine, perampanel, topiramate, and zonisamide. The assessment of effectiveness was based on seizure freedom within 48 h since the start of therapy with the respective ASM. Seizure freedom was evaluated both clinically (clinical evaluation at least three times per day) and by daily electroencephalogram records. Of the 138 patients aged 70.8 ± 8.1 years with benzodiazepine-refractory status epilepticus in ischemic poststroke epilepsy, 33 (23.9%) were treated with lacosamide, 24 (17.4%) with brivaracetam, 23 (16.7%) with eslicarbazepine, 21 (15.2%) with perampanel, 20 (14.5%) with topiramate, and 17 (12.3%) with zonisamide. Seizure freedom within 48 h was achieved in 66.7% of patients with lacosamide, 65.2% with eslicarbazepine, 38.1% with perampanel, 37.5% with brivaracetam, 35.0% with topiramate, and 35.3% with zonisamide (p < 0.05 for comparison of lacosamide or eslicarbazepine to other ASMs). Based on these data, lacosamide and eslicarbazepine might be more favorable in the treatment of refractory status epilepticus in poststroke epilepsy, when administered as second- or third-line ASMs before anesthesia. Because of the fact that these ASMs share the same mechanism of action (slow inactivation of sodium channels), our findings could motivate further research on the role that this pharmaceutical mechanism of action has in the treatment of poststroke epilepsy. This study was registered at ClinicalTrials.gov (NCT05267405).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call