Abstract

Although thiourea has been used widely to study the role of hydroxyl radicals in metal-mediated biological damage, it is not a specific hydroxyl radical scavenger and may also exert antioxidant effects unrelated to hydroxyl radical scavenging. Thus, we investigated the effects of thiourea on copper-induced oxidative damage to bovine serum albumin (1 mg/ml) in three different copper-containing systems: Cu(II)/ascorbate, Cu(II)/H 2O 2, and Cu(II)/H 2O 2/ascorbate [Cu(II), 0.1 mM; ascorbate, 1 mM; H 2O 2, 1 mM]. Oxidative damage to albumin was measured as protein carbonyl formation. Thiourea (0.1–10 mM) provided marked and dose-dependent protection against protein oxidation in all three copper-containing systems. In contrast, only minor protection was observed with dimethyl sulfoxide and mannitol, even at concentrations as high as 100 mM. Strong protection was also observed with dimethylthiourea, but not with urea or dimethylurea. Thiourea also significantly inhibited copper-catalyzed oxidation of ascorbate, and competed effectively with histidine and 1,10-phenanthroline for binding of cuprous, but not cupric, copper, as demonstrated by both UV-visible and low temperature electron spin resonance measurements. We conclude that the protection by thiourea against copper-mediated protein oxidation is not through scavenging of hydroxyl radicals, but rather through the chelation of cuprous copper and the formation of a redox-inactive thiourea-copper complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.