Abstract

A novel fluorescence/colorimetric dual-mode sensor, based on enhancement of the oxidase-like activity of CeO2/CuxO nanozyme towards the oxidation of o-phenylenediamine (OPD) induced by thiourea (TU), has been proposed for TU detection. The catalytic activity enhancement on CeO2/CuxO can be attributed to the strong electron-donation ability of TU, which promoted hydroxyl radical generation and amplified OPD oxidization with enhanced dual-signal readout. By integrating a portable paper-chip and smartphone system, this CeO2/CuxO-OPD system achieved on-site visual colorimetric analysis of TU. The dual-mode sensor demonstrated high sensitivity and specificity in recognizing TU, with a detection limit (LOD) of 1.90 μM and a linear range (LR) 2.5–80 μM in fluorescent mode; as well as an LOD of 6.69 μM and an LR 10–250 μM in colorimetric mode. Furthermore, the CeO2/CuxO-TU-OPD system has been designed for dual-mode glutathione (GSH) detection with enhanced sensitivity, achieving an LOD of 0.19 μM and an LR 0.5–10 μM in fluorescent mode; as well as an LOD of 1.24 μM and an LR 1.25–25 μM in colorimetric mode. Additionally, GSH discrimination (fluorescent mode) was successfully achieved in different biological samples, showing good consistency with the standard method. The recoveries ranged from 96.8 % to 116.7 % in serum samples and from 97.3 % to 107.7 % in cell lysates, with RSDs less than 2 %. This work not only introduced a novel approach to enhance oxidase-like activity of nanozymes but also provided an efficient field-suitable tool for enhanced dual-mode response towards TU and GSH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.