Abstract
This study revealed that, Thiothrix eikelboomii, a well-known filamentous bacterium that causes sludge bulking, could also interfere oxygen transfer during wastewater treatment. The volumetric oxygen transfer coefficient (KLa) in filamentous-bulking sludge (FBS) was found to be 43% lower than that in floc-forming sludge (FFS) at similar biomass concentrations, partially because the filamentous bacteria had increased the sludge apparent viscosity. The KLa value for FBS, however, was still significantly lower than that for FFS even if both sludges had similar apparent viscosity. Numerous tiny and free-swimming filaments were observed to attach on the air bubble surface, presumably reducing the liquid film renewal and increasing the liquid film thickness. Moreover, the filaments were co-coated with extracellular polymeric substances of protein and polysaccharide, which could make them performing like “amphiphilic molecules” of surfactants to hinder oxygen transfer. Therefore, the particular surface property of filaments and their interaction with air bubbles could also impact oxygen transfer. Thiothrix eikelboomii was identified to be the responsible filamentous bacterium that lowered the KLa value, while other filamentous bacteria with short filaments did not interfere oxygen transfer. This study implies that controlling sludge bulking benefits not only sludge settling but also oxygen transfer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.