Abstract

Thiosulfate, an important form of sulfur compounds, can serve as both electron donor and acceptor in various microorganisms. In Shewanella oneidensis, a bacterium renowned for respiratory versatility, thiosulfate reduction has long been recognized but whether it can catalyse thiosulfate oxidation remains elusive. In this study, we discovered that S. oneidensis is capable of thiosulfate oxidation, a process specifically catalysed by two periplasmic cytochrome c (cyt c) proteins, TsdA and TsdB, which act as the catalytic subunit and the electron transfer subunit respectively. In the presence of oxygen, oxidation of thiosulfate has priority over reduction. Intriguingly, thiosulfate oxidation negatively regulates the cyt c content in S. oneidensis cells, largely by reducing intracellular levels of cAMP, which as the cofactor modulates activity of global regulator Crp required for transcription of many cyt c genes. This unexpected finding provides an additional dimension to interplays between the respiration regulator and the respiratory pathways in S. oneidensis. Moreover, the data presented here identified S. oneidensis as the first bacterium known to date owning both functional thiosulfate reductase and dehydrogenase, and importantly, genomics analyses suggested that the number of bacterial species possessing this feature is rather limited.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.