Abstract

The RNA world of more than 3.7 billion years ago may have drawn on thermal and pH oscillations set up by the oxidation of thiosulfate by hydrogen peroxide (the THP oscillator) as a power source to drive replication. Since this primordial RNA also must have developed enzyme functionalities, in this work we examine the responses of two simple ribozymes to a THP periodic drive, using experimental rate and thermochemical data in a dynamical model for the coupled, self-consistent evolution of all reactants and intermediates. The resulting time traces show that ribozyme performance can be enhanced under pH cycling, and that thermal cycling may have been necessary to achieve large performance gains. We discuss three important ways in which the dynamic hydrogen peroxide medium may have acted as an agent for development of the RNA world towards a cellular world: proton gradients, resolution of the ribozyme versus replication paradox, and vesicle formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.