Abstract

Elevated expression or activity of the transcription factor forkhead box M1 (FOXM1) is associated with the development and progression of many malignancies, including breast cancer. In this study, we show that the thiazole antibiotic thiostrepton selectively induces cell cycle arrest and cell death in breast cancer cells through down-regulating FOXM1 expression. Crucially, our data show that thiostrepton treatment reduced FOXM1 expression in a time- and dose-dependent manner, independent of de novo protein synthesis and predominantly at transcriptional and gene promoter levels. Our results indicate that thiostrepton can induce cell death through caspase-dependent intrinsic and extrinsic apoptotic pathways as well as through caspase-independent death mechanisms, as observed in MCF-7 cells, which are deficient of caspase-3 and caspase-7. Cell cycle analysis showed that thiostrepton induced cell cycle arrest at G(1) and S phases and cell death, concomitant with FOXM1 repression in breast cancer cells. Furthermore, thiostrepton also shows efficacy in repressing breast cancer cell migration, metastasis, and transformation, which are all downstream functional attributes of FOXM1. We also show that overexpression of a constitutively active FOXM1 mutant, DeltaN-FOXM1, can abrogate the antiproliferative effects of thiostrepton. Interestingly, thiostrepton has no affect on FOXM1 expression and proliferation of the untransformed MCF-10A breast epithelial cells. Collectively, our data show that FOXM1 is one of the primary cellular targets of thiostrepton in breast cancer cells and that thiostrepton may represent a novel lead compound for targeted therapy of breast cancer with minimal toxicity against noncancer cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.