Abstract

Cellular growth inhibition exerted by thiosemicarbazones is mainly attributed to down-regulation of ribonucleotide reductase (RNR) activity, with RNR being responsible for the rate-limiting step of de novo DNA synthesis. In this study, we investigated the antineoplastic effects of three newly synthesized thiosemicarbazone derivatives, thiazolyl hydrazones, in human HL-60 promyelocytic leukemia cells.The cytotoxicity of compounds alone and in combination with arabinofuranosylcytosine (AraC) was determined by growth inhibition assays. Effects on deoxyribonucleoside triphosphate (dNTP) concentrations were quantified by HPLC, and the incorporation of radio-labeled 14C-cytidine into nascent DNA was measured using a beta counter. Cell cycle distribution was analyzed by FACS, and protein levels of RNR subunits and checkpoint kinases were evaluated by Western blotting.VG12, VG19, and VG22 dose-dependently decreased intracellular dNTP concentrations, impaired cell cycle progression and, consequently, inhibited the growth of HL-60 cells. VG19 also lowered the protein levels of RNR subunits R1 and R2 and significantly diminished the incorporation of radio-labeled 14C-cytidine, being equivalent to an inhibition of DNA synthesis. Combination of thiazolyl hydrazones with AraC synergistically potentiated the antiproliferative effects seen with each drug alone and might therefore improve conventional chemotherapeutic regimens for the treatment of human malignancies such as acute promyelocytic or chronic myelogenous leukemia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.