Abstract

We recently reported that nitric oxide (NO) induces posttranscriptional modulation of lung endothelial cell NO synthase (ecNOS) that results in loss of activity. The loss of activity can be reversed by the redox regulatory proteins thioredoxin (Thx)/thioredoxin reductase (Thx-R). The present study was designed to examine whether diminished expression of endogenous Thx and Thx-R may account for regulation of ecNOS activity in NO-exposed cells and whether overexpression of Thx can prevent NO-induced reduction of ecNOS activity in cultured porcine pulmonary artery endothelial cells (PAEC). Exposure to 8.5 ppm NO gas for 24 h resulted in an 80% decrease of Thx and a 27% decrease of Thx-R mRNA expression. Similarly, NO exposure caused 30 and 50% reductions in Thx and Thx-R protein mass, respectively. This NO-induced decrease in the expression of Thx-R mRNA and protein was accompanied by a significant (P < 0.05) decrease in the catalytic activity of Thx-R but not of glutaredoxin or the cellular levels of reduced glutathione and oxidized glutathione. Overexpression of Thx gene in PAEC was achieved by transient transfection of these cells with pcDNA 3.1 vector inserted in sense or antisense (native) orientation in a human Thx cDNA. Thx mRNA and protein contents in transfected cells were four- and threefold higher, respectively, than those in native PAEC. Exposure of native cells to 10 microM NO solution for 30 min resulted in a significant (P < 0.01) loss of ecNOS activity, whereas ecNOS activity was comparable in Thx-overexpressed cells with or without NO exposure. These results demonstrate that NO exposure results in diminished expression of Thx and Thx-R in PAEC. Endogenous levels of Thx are critical to restoring the NO-induced loss of ecNOS activity because overexpression of Thx prevented the NO-induced loss of ecNOS catalytic activity. These results also demonstrate that NO modulation of ecNOS and Thx proteins is regulated by a physiologically relevant redox mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call