Abstract

Purine scaffolds constitute a starting point for the synthesis of numerous chemotherapeutics used in treating cancer, viruses, parasites, as well as bacterial and fungal infections. In this work, we synthesized a group of guanosine analogues containing an additional five-membered ring and a sulfur atom at the C-9 position. The spectral, photophysical, and biological properties of the synthesized compounds were investigated. The spectroscopic studies revealed that a combination of the thiocarbonyl chromophore and the tricyclic structure of guanine analogues shifts the absorption region above 350 nm, allowing for selective excitation when present in biological systems. Unfortunately, due to the low fluorescence quantum yield, this process cannot be used to monitor the presence of these compounds in cells. The synthesized compounds were evaluated for their effect on the viability of human cervical carcinoma (HeLa) and mouse fibroblast (NIH/3T3) cells. It was found that all of them display anticancer activity. In vitro studies were preceded by in silico ADME and PASS analyses, which confirmed that the designed compounds are promising candidates for anticancer agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call