Abstract
Molecule-metal junctions are inevitable for the realization of single-molecule electronics. In this study, we developed new tripodal anchors with electron-rich aromatic rings to achieve robust contact with gold electrodes, an effective hybridization of the π orbital with gold electrodes (π channel), and hole transport through π-channel hybridization. Cyclic voltammetry and X-ray photoelectron spectroscopy measurements of the monolayers indicated that the thiophene-based tripodal molecule exhibits anchoring characteristics as expected. The electrical conductance of thiophene-anchored bistripodal molecules using the scanning tunneling microscope (STM)-based break junction technique confirmed the formation of molecular junctions. The Seebeck coefficient of this compound estimated from thermoelectric voltage measurements using a STM was determined to be a positive value, which indicates that the charge carriers are holes. On the contrary, the corresponding pyridine-anchored molecules showed electron transport. These results reveal the versatility of π-channel tripodal anchors for the control of charge-carrier type in single-molecule electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.