Abstract

Objective: To determine serum thiol/disulfide homeostasis in panic disorder (PD). Methods: Serum native thiol, total thiol, and disulfide levels were measured in the patients with 40 PD patients and 40 healthy subjects. Serum native thiol, total thiol, and disulfide levels were measured with a novel colorimetric, automated method. The thiol-disulfide ratio was also calculated. Results: The native thiol (p < 0.001) and total thiol (p < 0.001) levels, and the native thiol/total thiol (p < 0.001) ratio were significantly lower, whereas disulfide/native thiol (p < 0.001) and disulfide/total thiol (p < 0.001) ratio significantly increased in the PD patient group compared to the control group. The cut-off value was 92.26, 3.83 and 3.56 for native thiol/total thiol, disulfide/native thiol and disulfide/total thiol respectively. Conclusion: This is the first study in the literature to evaluate thiol-disulfide homeostasis in patients with PD. Our results suggest that the disulfide/thiol ratio is significantly greater in panic disorder patients.

Highlights

  • Despite significant progress in studies on panic disorder (PD), etiopathogenic processes cannot be clearly defined

  • While the native thiol/total thiol ratio was decreased in the patient group (p < 0.001), disulfide/ native thiol and disulfide/total thiol ratios were elevated in the patient group (p < 0.001, p < 0.001 respectively)

  • The present study investigated thiol-disulfide homeostasis using a new, colorimetric, and automated method in PD patients

Read more

Summary

Introduction

Despite significant progress in studies on PD, etiopathogenic processes cannot be clearly defined. One of the important processes in the pathogenesis of PD is oxidative stress [1]. Oxidative stress can be evaluated indirectly by the measurement of some antioxidant enzyme levels such as superoxide dismutase (SOD), catalase (CAT), or glutathione peroxidase (GSH-Px), by-products of lipid peroxidation such as malondialdehyde (MDA) [2]. Kulaksizoglu tant findings have been revealed by studies on oxidative and anti-oxidative parameters (MDA, SOD, glutathione (GSH), adenosine deaminase (ADA), xanthine oxidase (XO), total antioxidant status (TAS), total oxidative status (TOS), oxidative stress index (OSI), ceruloplasmin) related to PD etiology, oxidant-antioxidant homeostasis of PD is not fully clear [1] [3] [4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call