Abstract

Site-specific conjugation technology frequently relies on antibody engineering to incorporate rare or non-natural amino acids into the primary sequence of the protein. However, when the primary sequence is unknown or when antibody engineering is not feasible, there are very limited options for site-specific protein modification. We have developed a transglutaminase-mediated conjugation that incorporates a thiol at a "privileged" location on deglycosylated antibodies (Q295). Perhaps surprisingly, this conjugation employs a reported transglutaminase inhibitor, cystamine, as the key enzyme substrate. The chemical incorporation of a thiol at the Q295 site allows for the site-specific attachment of a plethora of commonly used and commercially available payloads via maleimide chemistry. Herein, we demonstrate the utility of this method by comparing the conjugatability, plasma stability, and in vitro potency of these site-specific antibody-drug conjugates (ADCs) with analogous endogenous cysteine conjugates. Cytotoxic ADCs prepared using this methodology are shown to exhibit comparable in vitro efficacy to stochastic cysteine conjugates while displaying dramatically improved plasma stability and conjugatability. In particular, we note that this technique appears to be useful for the incorporation of highly hydrophobic linker payloads without the addition of PEG modifiers. We postulate a possible mechanism for this feature by probing the local environment of the Q295 site with two fluorescent probes that are known to be sensitive to the local hydrophobic environment. In summary, we describe a highly practical method for the site-specific conjugation of genetically nonengineered antibodies, which results in plasma-stable ADCs with low intrinsic hydrophobicity. We believe that this technology will find broad utility in the ADC community.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call