Abstract

The limitations of protein-based hydrogels, including their insufficient mechanical properties and restricted biological functions, arise from the highly specific functions of proteins as natural building blocks. A potential solution to overcome these shortcomings is the development of protein-protein hydrogels, which integrate structural and functional proteins. In this study, a protein-protein hydrogel formed by crosslinking bovine serum albumin (BSA) and a genetically engineered intrinsically disordered collagen-like protein (CLP) through Ag─S bonding is introduced. The approach involves thiolating lysine residues of BSA and crosslinking CLP with Ag+ ions, utilizing thiolation of BSA and the free-cysteines of CLP. The resulting protein-protein hydrogels exhibit exceptional properties, including notable plasticity, inherent self-healing capabilities, and gel-sol transition in response to redox conditions. In comparison to standalone BSA hydrogels, these protein-protein hydrogels demonstrate enhanced cellular viability, and improved cellular migration. In vivo experiments provide conclusive evidence of accelerated wound healing, observed not only in murine models with streptozotocin (Step)-induced diabetes but also in zebrafish models subjected to UV-burn injuries. Detailed mechanistic insights, combined with assessments of proinflammatory cytokines and the expression of epidermal differentiation-related proteins, robustly validate the protein-protein hydrogel's effectiveness in promoting wound repair.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call