Abstract

Purpose: The purpose of this study was to develop and characterize new surface-modified iron oxide nanoparticles demonstrating the efficiency to be internalized by human endothelial progenitor cells (EPCs) from umbilical cord blood.Methods: Iron oxide nanoparticles were coated with polyacrylic acid-cysteine (PAA-Cys) by either in situ precipitation or postsynthesis. The nanoparticles were characterized by X-ray powder diffraction. EPCs were labeled with PAA-Cys-modified iron oxide nanoparticles or with uncoated nanoparticles. The relaxivity of uncoated and coated iron oxide nanoparticles as well as EPCs labeled with PAA-Cys-modified iron oxide were determined.Results: Addition of PAA-Cys increased the particle size from 10.4 to 144 and 197 nm, respectively. The X-ray powder diffraction pattern revealed that the particles consist of Fe3O4 with a spinal structure. Postsynthesis coated particles showed a cellular uptake of 85% and 15.26 pg iron/cell. For both types of particles the relaxivity ratio was at least 2-fold higher than that of the gold standard Resovist®.Conclusion: The PAA-Cys coated iron oxide nanoparticles are a promising tool for labeling living cells such as stem cells for diagnostic and therapeutic application in cell-based therapies due to their high relaxivities and their easy uptake by cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call