Abstract

Photothermal and photodynamic therapies (PTT/PDT) have been widely accepted as noninvasive therapeutic methods for cancer treatment. However, tumor hypoxia and insufficient delivery of photoactive compounds to cancer cells can reduce the efficacy of phototherapy. Herein, we first synthesized thiolated hyaluronic acid (THA) and then conjugated it with catalase (CAT) onto chlorin e6 (Ce6)-adsorbed small gold nanorods (Ce6@sAuNRs) with near-infrared (NIR)/visible light activated photothermal/photodynamic effects. The conjugation of THA and CAT on Ce6@sAuNRs resulted in a red-shift of the longitudinal LSPR absorption band of sAuNRs up to 1000 nm and maintained the excellent enzymatic activity of catalase. Modification of Ce6@sAuNRs with THA resulted in efficient internalization of the nanocomposite into MCF-7/ADR multidrug-resistant (MDR) breast cancer cells (CD44+), thereby significantly enhancing the intracellular accumulation of the photosensitizer Ce6. CAT endows Ce6@sAuNRs with self-supporting oxygen production, which enables them to efficiently generate singlet oxygen (1O2) under 660 nm laser irradiation and enhances the photodynamic effect against hypoxic breast cancer cells. The results highlight the prospect of this novel multi-functional nanoplatform integrating active biological macromolecules (THA and CAT) into photosensitizer/photothermal gold nanocomposites in overcoming the limitations of hypoxic MDR breast cancer cell treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.