Abstract

Chitosan exhibits great versatility in various biomedical fields and mesoporous silica nanoparticles have emerged as an interesting material in biomedical areas owing to their outstanding physio-chemical properties. The combination of inorganic silica and organic polymer such as chitosan, make them suitable for a wide range of biomedical applications. Here, we have explored the benefits of chitosan and silica by synthesizing chitosan-silica nanohybrid. In the synthesis of chitosan-silica (CS–Si) nanohybrid, chitosan is modified by thioglycolic acid and mesoporous silica MCM-41(Mobil Composition of Matter number 41) is functionalized by 3-(trimethoxysilyl)-1-propane thiol (TMSP). The modified chitosan and thiol functionalized MCM-41(inorganic network) is then linked through disulfide bond by oxidation process or oxidative coupling, resulting in the formation of inorganic-organic hybrid material. The hybrid material was characterized by FTIR, Raman, XRD, TGA, Zeta potential, EDX, Proton NMR and SEM techniques. The antibacterial results indicated that gram-negative (E. coli) bacteria exhibit better inhibition zone than gram-positive (B. subtilis) bacteria. The DPPH scavenging capability of synthesized hybrid was found to be 68%. The drug (quercetin) encapsulation efficiency of hybrid material was calculated to be 92.38% and more drug releases in acidic medium (pH 5.0) than at pH 7.4, so we can conclude that hybrid material shows pH-dependent drug releasing behavior. The results show that synthesized nano-hybrid material possess good antibacterial and antioxidant activities and is also a good nanocarrier for drug delivery application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call