Abstract

Hyaluronic acid (HA)-based biomaterials have demonstrated only limited in vivo stability as a result of rapid degradation by hyaluronidase and reactive oxidative species. The green tea catechin, (-)-epigallocatechin-3-O-gallate (EGCG), has received considerable attention because of its powerful antioxidant and enzyme-inhibitory activities. We describe here the synthesis of HA-EGCG conjugate using a thiol-mediated reaction and its use for the preparation of a long-lasting injectable hydrogel. HA-EGCG conjugates with tunable degrees of substitution were synthesized by the nucleophilic addition reaction between EGCG quinone and thiolated HA under mild conditions. Contrary to unmodified HA, the conjugates exhibited free radical scavenging and hyaluronidase-inhibitory activities. Peroxidase-catalyzed coupling reaction between EGCG moieties was employed to produce in situ forming HA-EGCG hydrogel with surprisingly high resistance to hyaluronidase-mediated degradation. When injected subcutaneously in mice, HA-EGCG hydrogel was retained much longer than HA-tyramine hydrogel with minimal inflammation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.