Abstract

Recently, the use of atomic spectrometry (AS) for biochemical analysis has attracted considerable attention due to its high sensitivity, selectivity and anti-interference ability. In this work, we conducted a detailed study on a phenomenon of thiol inhibition of mercury (Hg2+) cold vapor generation (CVG) and found L-cysteine (L-Cys), glutathione (GSH), dithiothreitol, N-Acetyl-L-cysteine, 3-mercaptopropionic acid, β-mercaptoethanol, and NaI can inhibit the CVG of Hg2+, while EDTA has no inhibitory effect. Furthermore, changing the content of –SH can effectively adjust the CVG atomic fluorescence spectrometer (CVG-AFS) signal of Hg2+. As as a consequence, an AS-based homogeneous bioassay was constructed by adjusting the oxidation ratio and production quantity of –SH in the system. The quantitative analysis of the system was demonstrated by using AFS as a representative detector. Hydrogen peroxide (H2O2) and glucose were used as representative analytes for the validation of Hg2+ atomic fluorescence signal turn-off strategy, and butyrylcholinesterase (BChE) as well as parathion (organophosphorus pesticides, OPs) as utilized as representative targets for the signal turn-on strategy. Under optimal experimental conditions, the homogeneous CVG-AFS sensor can be successfully used to detect 3 μM H2O2, 30 μM glucose, 0.25 U/L BChE, and 0.4 μg/mL parathion. In addition, the detection results of glucose and BChE in human serum samples agreed well with those obtained by using glucometer and kit, showing the promising potential of this method for practical applications. Therefore, this work provides a perspective for the construction of AS-based homogeneous bioassays and shows great potential for the detection of biomarkers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call