Abstract

Hierarchically porous materials with multiple pore structures have the potential application in catalysis, separation or bioengineering. A concept was introduced to design and fabricate hierarchically porous hybrid materials (HPHMs) simultaneously containing mesopores and macropores. The proof-of-concept design was demonstrated by fabrication of several kinds of hybrid materials by adding degradable polycaprolactone (PCL) additive, which was simple and easy-operating. The specific surface areas of HPHMs prepared with polyhedral oligomeric vinylsilsesquioxanes (vinylPOSS) and 1,4-dithiothreitol (DTT) could reach 727 m2/g by adding 25% PCL additive, while the HPHMs were imperforate prior to degradation of PCL. The characterization further indicated that the macropores could be controlled by the amount of PCL additive. Moreover, the porous properties of HPHMs were influenced by the molecular weight of PCL. Other dithiols compounds were also successful in preparing HPHMs with high specific surface areas over 400 m2/g. Due to hydrophobic interaction and hydrogen bond interaction, the HPHM exhibited good adsorption ability for bisphenol A (BPA) in aqueous solution. Adsorption equilibrium could be achieved within 30 min, and the adsorption capacity was up to 157.4 mg/g. Meanwhile, the removal efficiency was found to be 95.37% for BPA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.