Abstract
To date, scalability limitations have hindered the exploration and application of sequence-defined polymers in areas such as synthetic plastics, fibers, rubbers, coatings, and composites. Additionally, the impact of sequence on the properties of cross-linked networks remains largely unknown. To address the need for synthetic methods to generate sequence-defined materials in gram quantities, we developed a strategy involving inexpensive and readily functional vanillin-based monomers to assemble sequence-defined polyurethane oligomers via sequential reductive amination and carbamation. Three oligomers were synthesized with monomer sequence precisely dictated by the placement of reactive side chains during the reductive amination reaction. Avoiding excessive chromatographic purification and solid- or liquid-phase supports enabled synthesis of sequence-defined oligomers on the gram-scale. Remarkably, sequence was shown to influence network topology upon cross-linking, as evidenced by sequence-dependent rubbery moduli values. This work provides one of the first examples of a scalable synthetic route toward sequence-defined thermosets that exhibit sequence-dependent properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.