Abstract

Amorphous carbon (aC) films are chemically stable under ambient conditions or when interfaced with aqueous solutions, making them a promising material for preparing biosensors and chemically modified electrodes. There are a number of wet chemical methods capable of tailoring the reactivity and wettability of aC films, but few of these chemistries are compatible with photopatterning. Here, we introduce a method to install thiol groups directly onto the surface of aC films. These terminal thiols are compatible with thiol-ene click reactions, which allowed us to rapidly functionalize and pattern the surface of the aC films. We thoroughly characterized the aC films and confirmed the installation of surface-bound thiols does not significantly oxidize the surface or change its topography. We also determined the conditions needed to selectively attach alkene-containing molecules to these films and show the reaction is proceeding through a thiol-mediated reaction. Lastly, we demonstrate the utility of our approach by photopatterning the aC films and preparing ferrocene-modified aC electrodes. The chemistry described here provides a rapid means of fabricating sensors and preparing photoaddressable arrays of (bio)molecules on stable carbon interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.