Abstract

Chromene as the efficient biothiol recognition site was widely used to develop fluorescent probes based on thiol-chromene click reaction. However, chromene-based fluorescent probes with the both properties of ratiometric measurement and mitochondria-targeted function have not been reported and remain challenging. In this paper, we skillfully designed and synthesized the first mitochondria-targeted ratiometric fluorescent probe (Probe 1) for biothiols based on chromene. Upon addition of biothiols (Cys, Hcy, and GSH), the absorption and fluorescence spectra of Probe 1 changed from 490 to 426nm and from 567 to 498nm respectively, accompanied by color changes from orange to pale yellow under natural light and from orange to blue under a 365-nm UV lamp, which can be attributed to the click reaction of biothiols with α,β-unsaturated ketone of chromene moiety, subsequent pyran ring-opening, and phenol formation as well as 1,6-elimination of p-hydroxybenzyl moiety. Probe 1 not only exhibited high sensitivity (LODs of 149nM, 133nM, and 116nM for Cys, GSH, and Hcy respectively), rapid response, and excellent selectivity for biothiols (Cys, Hcy, and GSH), but also could target in mitochondria and ratiometrically image the fluctuation of intracellular biothiols. Moreover, the novel design strategy of modifying chromene to the N atom of pyridine was proposed for the first time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.