Abstract

The sperm tail outer dense fibres (ODFs) contribute passive structural role in sperm motility. The level of disulphide cross-linking of ODFs and their structural thickness determines flagellar bending curvature and motility. During epididymal maturation, proteins are internalized to modify ODF disulphide cross-linking and enable motility. Sperm thiol status is further altered during capacitation in female tract. This suggests that components in female reproductive tract acting on thiol/disulphides could be capable of modulating the tail stiffness to facilitate modulation of the sperm tail rigidity and waveform en route to fertilization. Understanding the biochemical properties and client proteins of ODFs in reproductive tract fluids will help bridge this gap. Using recombinant ODF2 (aka Testis Specific Antigen of 70 kDa) as bait, we identified client proteins in male and female reproductive fluids. A thiol-based interaction and internalization indicates sperm can harness reproductive tract fluids for proteins that interact with ODFs and likely modulate the tail stiffness en route to fertilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call