Abstract
A moderately halophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium, designated strain HRh1(T), was obtained from mixed sediment samples from hypersaline chloride-sulfate lakes in the Kulunda Steppe, in south-western Siberia (Russia), using aerobic enrichment culture at 1 M NaCl with thiocyanate as substrate. Cells of the isolate were short, non-motile rods with a Gram-negative type of cell wall. The bacterium was an obligate aerobe capable of chemolithoautotrophic growth with thiocyanate and thiosulfate. With thiosulfate, it grew at NaCl concentrations of 0.2-3.0 M (optimum 0.5 M) and at pH 6.3-8.0 (optimum pH 7.3-7.5). During growth on thiocyanate, cyanate was identified as an intermediate. The dominant cellular fatty acids were C(16 : 0) and C(18 : 1)omega7. Phylogenetic analysis based on 16S rRNA gene sequencing placed the isolate in the class Gammaproteobacteria as an independent lineage, with an unclassified marine sulfur-oxidizing bacterium as the closest culturable relative (93 % sequence similarity). A single cbbL gene (coding for the key enzyme of the Calvin-Benson cycle of autotrophic CO(2) assimilation) with relatively low similarity to any homologous genes found in chemolithoautotrophs was detected in strain HRh1(T). On the basis of our phenotypic and phylogenetic analysis, the halophilic isolate is proposed to represent a new genus and novel species, Thiohalobacter thiocyanaticus gen. nov., sp. nov. The type strain of Thiohalobacter thiocyanaticus is HRh1(T) (=DSM 21152(T) =UNIQEM U249(T)).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Systematic and Evolutionary Microbiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.