Abstract
To model thioether-copper coordination chemistry including oxidative reactivity, such as occurs in the copper monooxygenases peptidylglycine -hydroxylating monooxygenase (PHM) and dopamine beta-hydroxylase (DbetaH), we have synthesized new tridentate N2S ligands LSEP and LSBz [LSEP = methyl(2-phenethylsulfanylpropyl)(2-pyridin-2-ylethyl)amine; LSBz = (2-benzylsulfanylpropyl)methyl(2-pyridin-2-ylethyl)amine)]. Both copper(I) and copper(II) complexes have been prepared, and their respective O2 and H2O2 chemistry has been studied. Under mild conditions, oxygenation of [(LSEP)CuI]+ (1a) and [(LSBz)CuI]+ (2a) leads to ligand sulfoxidation, thus exhibiting copper monooxygenase activity. A copper(II) complex of this sulfoxide ligand product, [(LSOEP)CuII(CH3OH)(OClO3)2], has been structurally characterized, demonstrating Cu-Osulfoxide ligation. The X-ray structure of [(LSEP)CuII(H2O)(OClO3)]+ (1b) and its solution UV-visible spectral properties [S-CuII LMCT band at 365 nm (MeCN solvent); epsilon = 4285 M-1 cm-1] indicate the thioether sulfur atom is bound to the cupric ion in both the solid (CuII-S distance: 2.31 A) and solution states. Reaction of 1b with H2O2 leads to sulfonation via the sulfoxide; excess hydrogen peroxide gives mostly sulfone product. These results may provide some insight into recent reports concerning protein methionine oxidation, showing the potential importance of copper-mediated oxidation processes in certain biological settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.