Abstract

Parkinson's disease (PD) is due to the oxidation of alpha synuclein (αSyn) contributing to motor impairment. We developed a transgenic mouse model of PD that overexpresses the mutated human αSyn gene (A53T) crossed to a mouse expressing the human MPO gene. This model exhibits increased oxidation and chlorination of αSyn leading to greater motor impairment. In the current study, the hMPO-A53T mice were treated with thiocyanate (SCN-) which is a favored substrate of MPO as compared to chlorine. We show that hMPO-A53T mice treated with SCN- have less chlorination in the brain and show an improvement in motor skills compared to the nontreated hMPO-A53T mice. Interestingly, in the hMPO-A53T mice we found a possible link between MPO-related disease and the glymphatic system which clears waste including αSyn from the brain. The untreated hMPO-A53T mice exhibited an increase in the size of periventricular glymphatic vessels expressing the glymphatic marker LYVE1 and aquaporin 4 (AQP4). These vessels also exhibited an increase in MPO and HOCl-modified epitopes in the glymphatic vessels correlating with loss of ependymal cells lining the ventricles. These findings suggest that MPO may significantly promote the impairment of the glymphatic waste removal system thus contributing to neurodegeneration in PD. Moreover, the inhibition of MPO chlorination/oxidation by SCN- may provide a potential therapeutic approach to this disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.