Abstract

The synthesis and self-assembly of peptide-polymer conjugates into fibrillar nanostructures are reported, based on the amyloidogenic peptide KLVFF. A strategy for rational synthesis of polymer-peptide conjugates is documented via tethering of the amyloidogenic peptide segment LVFF (Aβ17-20 ) and its modified derivative FFFF to the hydrophilic poly(ethylene glycol) monomethyl ether (mPEG) polymer via thio-bromo based "click" chemistry. The resultant conjugates mPEG-LVFF-OMe and mPEG-FFFF-OMe are purified via preparative gel permeation chromatography technique (with a yield of 61% and 64%, respectively), and are successfully characterized via combination of spectroscopic and chromatographic methods, including electrospray ionization time-of-flight mass spectrometry. The peptide-guided self-assembling behavior of the as-constructed amphiphilic supramolecular materials is further investigated via transmission electron microscopic and circular dichroism spectroscopic analysis, exhibiting fibrillar nanostructure formation in binary aqueous solution mixture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call