Abstract

AbstractThe magnetospheric substorm is a key mode of flux and energy transport throughout the magnetosphere associated with distinct and repeatable magnetotail dynamical processes and plasma injections. The substorm growth phase is characterized by current sheet thinning and magnetic field reconfiguration around the equatorial plane. The global characteristics of current sheet thinning are important for understanding of magnetotail state right before the onset of magnetic reconnection and of the key substorm expansion phase. In this paper, we investigate this thinning at different radial distances using plasma sheet (PS) energetic (>50 keV) electrons that reach from the equator to low altitudes during their fast (∼1 s) travel along magnetic field lines. We perform a multi‐case study and a statistical analysis of 34 events with near‐equatorial observations of the current sheet thinning by equatorial missions and concurrent, latitudinal crossings of the ionospheric projection of the magnetotail by the low‐altitude Electron Losses and Fields Investigation (ELFIN) CubeSats at approximately the same local time sector. Energetic electron fluxes thus collected by ELFIN provide near‐instantaneous (<5 min duration) radial snapshots of magnetotail fluxes. Main findings of this study confirm the previously proposed concepts with low‐altitude energetic electron measurements: (a) Energy distributions of low‐altitude fluxes are quantitatively close to the near‐equatorial distributions, which justifies the investigation of the magnetotail current sheet reconfiguration using low‐altitude measurements. (b) The magnetic field reconfiguration during the current sheet thinning (which lasts ≥ an hour) results in a rapid shrinking of the low‐altitude projection of the entire PS (from near‐Earth, ∼10RE, to the lunar orbit ∼60RE) to 1–2° of magnetic latitude in the ionosphere. (c) The current sheet dipolarization, common during the substorm onset, is associated with a very quick (∼10 min) change of the tail magnetic field configuration to its dipolar state, as implied by a poleward expansion of the PSPS at low altitudes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call