Abstract

We present a theoretical explanation of the remarkable thickness instabilities that occur in free-standing smectic films (FSSF) upon changing the external conditions: i) upon heating the film above the bulk smectic disordering temperature, generally the film does not rupture but instead shows successive layer-by-layer thinning transitions; ii) thickening of FSSF, which occurs within the thermal range of the smectic phase upon local heating. All observations reported so far can be explained on the basis of the Landau-de Gennes theory of the smectic state in combination with nucleation theory. In overheated smectic films (thinning) or locally heated FSSF (thickening) an additional normal tensile force appears due to a change of the mean density of the film. In the case of an overheated FSSF the free energy has oscillatory character, and upon heating the balance of tensile and elastic forces breaks down spontaneously. This leads to thinning of the film, which proceeds via thermal nucleation and growing of dislocation loops in the middle plane of the film. The expression for the envelope of the points of thinning as well as estimates of the dynamics of growth of dislocation loops, are in good agreement with experiments. Local heating of a FSSF within the smectic temperature range induces thermal expansion, which shifts the system to a metastable state. This favors nucleation and growth of dislocation loops of excess smectic layers in the middle plane of the film. The activation energy of such dislocation loops attains values below the threshold energy and decreases upon further heating. This leads to local film thickening by many tens of layers. Realization of this scenario depends crucially on the energy dissipated locally in the film. Estimates of the thickness of the growing "island" in the film and of the velocity of the dislocation loop growth are in reasonable agreement with experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.