Abstract
This paper presents an optimal thinning of a large multiple concentric circular ring arrays of uniformly excited isotropic antennas based on Particle Swarm Optimization method. Circular Antenna Array (CAA) has gained immense popularity in the field of communications nowadays. It has proved to be a better alternative over other types of antenna array configuration due to its all-azimuth scan capability, and the beam pattern which can be kept invariant. In this paper, a 9 ringed Concentric Circular Antenna Array (CCAA) with central element feeding is considered. Extensive simulation results justify the optimization efficacy of the proposed approach for antenna array synthesis. The simulation results show that the number of effective antenna elements can be brought down from 279 to 139 with simultaneous reduction in Side Lobe Level by 20.37dB relative to the main beam with a fixed half power beamwidth using PSO. Real coded Genetic Algorithm (RGA) as well is also adopted to compare the results of PSO algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.