Abstract
A kinetic theory of the expansion into a vacuum of a plasma thin foil with initially a hot and a cold Maxwellian electron population is examined with a one-dimensional kinetic code. Whereas hot electrons always lose energy to expanding ions, cold electrons can either gain or lose energy depending on the initial temperature and density ratios and on time. When the cold electrons' density is not too large, they experience initially an adiabatic compression by the electric field associated with the rarefaction wave. The corresponding temperature increase can be as large as a factor of a few tens. Later on, as expected, the cold electrons eventually lose energy to the expansion. When cold electrons are numerically dominant, a rarefaction shock appears during the first phase of the expansion. Hot electrons cool down faster than cold electrons, thus reducing the effective temperature ratio. Furthermore, the amplitude of the rarefaction shock and the dip that it causes on the ion velocity spectrum tend to be smoothed out by the expansion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.