Abstract

We have deposited Si-incorporated diamond-like carbon (DLC) films by radio-frequency plasma-enhanced chemical vapor deposition using methane, argon, and monomethylsilane (MMS; CH3SiH3) as a silicon source, and have investigated the structural and mechanical properties of the films. The deposition rate and Si atomic fraction [Si/(Si+C)] in the DLC films increased with increasing MMS flow ratio. The Si fraction was approximately 13% at a MMS flow ratio [MMS/(MMS+CH4)] of 3%, showing that the deposition using a combination of CH4 and MMS produces films with high Si content compared with those deposited using conventional C and Si sources. The Si fraction was also found to increase with a decrease in Ar flow rate under a constant MMS flow ratio. Many particles composed mainly of Si, whose size was 0.3–1 µm in diameter, were observed on the surface when deposition was carried out at MMS flow ratios of 15 and 30%. Compressive internal stress in the films decreased with the MMS flow ratio and/or with the Ar flow rate. The decrease in internal stress is probably due to the relaxation of a three-dimensional rigid network by the formation of Si–C and Si–H bonds in the films as well as Ar+ ion bombardment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.